

What Is Scalar Energy?

Scalar energy is considered, by the relatively few who know it exists, as potentially the greatest discovery in the history of science. Mostly referred to by the term 'scalar fields' or 'scalar energy', other terms used to describe this property of the universe are information fields, longitudinal waves, zero-point energy, tachyon, orgone, radiant energy, gravitic waves, quintessence, standing waves, and Tesla fields. The subject of scalar ties intimately into quantum mechanics and quantum field theory.

Scalar fields exist as the informational/non-physical component of all matter, but in this article we will be discussing them mainly in relation to electromagnetic fields (EMFs). Every EM wave has a component called the transverse wave, and another component called the longitudinal (scalar) wave.

Transverse waves are the part of the EMF that can be measured by meters, because they exist fully in 3-space (three-dimensional space) and are easily measurable. The term transverse refers to the up-and-down, oscillating motion of this wave moving through 3D space. They are also called Hertzian waves, and produce measurable frequencies. Transverse waves are what are currently being used in electricity and telecommunications, since they were more easily detectable and quantifiable to early scientists and electrical engineers.

The longitudinal (scalar) component of the EM wave does not exist normally in 3-space. It moves along the axis of time itself, the 4th dimension. This sounds mysterious and may be hard to understand without delving deeply into quantum mechanics, but time is considered to be simply compressed energy, compressed by the factor of the speed of light squared. Scalar waves are superluminal, which means they move faster than the speed of light, because they are unbounded by the limitations of 3D space. Also, since they don't exist in the third dimension in the same way that matter does, they move through the empty space between all matter. They are not limited or blocked by physical obstructions in space, like transverse EM waves are.

The scalar component of an electromagnetic field is about 5 times stronger than the transverse component. For example, if your EMF meter picks up 100 milligauss, this is just a reading of the transverse wave that emits a measurable frequency, and the invisible scalar component will be around 500 milligauss.

Although scalar fields cannot be detected by a standard meter, they are readily picked up by living organisms. All living things produce their own scalar energy (called bio-scalar), and are sensitive to scalar energy in their environment. The Earth is constantly producing a variety of ever-changing scalar fields, with which our bodies have evolved.

Contrary to seemingly prevalent beliefs in the inherent goodness of scalar, scalar fields aren't good or bad. Their healing and constructive effects, or destructive effects, depends on how they are produced, exactly what information is being carried by the scalar component, and the coherent or incoherent fields that can be used for either harmonizing or destructive purposes.

The History of Scalar Energy in Science and

Electromagnetics

The first time in recorded history that scalar was described was by Scottish scientist James Clerk Maxwell, in the mid 1800s. His first equations describing electric and magnetic fields also accounted for a scalar component. His linking of electricity and magnetism in his equations formed the basis of modern physics, and also presented the theoretical possibility of scalar energy. As Maxwell's electromagnetic concepts were further developed by early scientists (including Heinrich Hertz), the scalar theory was disregarded as 'too mystical' and physically unmanifest, and therefore ineffectual. This couldn't be further from the truth, but it took half a century longer to begin to discover the true power of scalar.

Nikola Tesla, a Serbian-American inventor, physicist, electrical engineer, and the inventor of radio and the alternating current (AC), accidentally rediscovered scalar waves while experimenting with violently abrupt direct current (DC) electrical charges. Tesla's experiments were building on German physicist Heinrich Hertz's proof of Maxwell's electromagnetic theories.

By 1904, Tesla had developed transmitters to move scalar energy back and forth while bypassing time and space with no need for wires, as it would simply materialize from one place to another through hyperspace. Unfortunately, he never received funding to continue his research to develop scalar technology enough to replace current forms of electricity. It is widely believed that Tesla never received funding because his discoveries were a threat to the profits of the huge energy industries of the time. Tesla had found a way to do what these industries were doing, but far better, faster, and with less expense to the consumer, because they didn't require the use of oil, coal or even wires.

The implications of continuing to develop scalar field theory and its practical applications could dramatically change the course of the world and society. Possibilities for the beneficial use of scalar energy include:

- clean, 'free' energy technology to replace coal and oil fuel sources
- the ability to transmute elements, including radioactive waste, into inert substances
- harnessing gravitic forces to create anti-gravity aircraft for space travel
- using scalar carrier waves to deliver 'perfect DNA' information to stimulate physical healing from illness